A privacy-preserving platform oriented medical healthcare and its application in identifying patients with candidemia

Sci Rep. 2024 Jul 6;14(1):15589. doi: 10.1038/s41598-024-66596-8.


Federated learning (FL) has emerged as a significant method for developing machine learning models across multiple devices without centralized data collection. Candidemia, a critical but rare disease in ICUs, poses challenges in early detection and treatment. The goal of this study is to develop a privacy-preserving federated learning framework for predicting candidemia in ICU patients. This approach aims to enhance the accuracy of antifungal drug prescriptions and patient outcomes. This study involved the creation of four predictive FL models for candidemia using data from ICU patients across three hospitals in China. The models were designed to prioritize patient privacy while aggregating learnings across different sites. A unique ensemble feature selection strategy was implemented, combining the strengths of XGBoost’s feature importance and statistical test p values. This strategy aimed to optimize the selection of relevant features for accurate predictions. The federated learning models demonstrated significant improvements over locally trained models, with a 9% increase in the area under the curve (AUC) and a 24% rise in true positive ratio (TPR). Notably, the FL models excelled in the combined TPR + TNR metric, which is critical for feature selection in candidemia prediction. The ensemble feature selection method proved more efficient than previous approaches, achieving comparable performance. The study successfully developed a set of federated learning models that significantly enhance the prediction of candidemia in ICU patients. By leveraging a novel feature selection method and maintaining patient privacy, the models provide a robust framework for improved clinical decision-making in the treatment of candidemia.

PMID:38971879 | DOI:10.1038/s41598-024-66596-8

Free CME credits

Both our subscription plans include Free CME/CPD AMA PRA Category 1 credits.

Digital Certificate PDF

On course completion, you will receive a full-sized presentation quality digital certificate.

medtigo Simulation

A dynamic medical simulation platform designed to train healthcare professionals and students to effectively run code situations through an immersive hands-on experience in a live, interactive 3D environment.

medtigo Points

medtigo points is our unique point redemption system created to award users for interacting on our site. These points can be redeemed for special discounts on the medtigo marketplace as well as towards the membership cost itself.
  • Registration with medtigo = 10 points
  • 1 visit to medtigo’s website = 1 point
  • Interacting with medtigo posts (through comments/clinical cases etc.) = 5 points
  • Attempting a game = 1 point
  • Community Forum post/reply = 5 points

    *Redemption of points can occur only through the medtigo marketplace, courses, or simulation system. Money will not be credited to your bank account. 10 points = $1.

All Your Certificates in One Place

When you have your licenses, certificates and CMEs in one place, it's easier to track your career growth. You can easily share these with hospitals as well, using your medtigo app.

Our Certificate Courses

Up arrow