fbpx

Predictive approach for liberation from acute dialysis in ICU patients using interpretable machine learning

Sci Rep. 2024 Jun 7;14(1):13142. doi: 10.1038/s41598-024-63992-y.

ABSTRACT

Renal recovery following dialysis-requiring acute kidney injury (AKI-D) is a vital clinical outcome in critical care, yet it remains an understudied area. This retrospective cohort study, conducted in a medical center in Taiwan from 2015 to 2020, enrolled patients with AKI-D during intensive care unit stays. We aimed to develop and temporally test models for predicting dialysis liberation before hospital discharge using machine learning algorithms and explore early predictors. The dataset comprised 90 routinely collected variables within the first three days of dialysis initiation. Out of 1,381 patients who received acute dialysis, 27.3% experienced renal recovery. The cohort was divided into the training group (N = 1135) and temporal testing group (N = 251). The models demonstrated good performance, with an area under the receiver operating characteristic curve of 0.85 (95% CI, 0.81-0.88) and an area under the precision-recall curve of 0.69 (95% CI, 0.62-0.76) for the XGBoost model. Key predictors included urine volume, Charlson comorbidity index, vital sign derivatives (trend of respiratory rate and SpO2), and lactate levels. We successfully developed early prediction models for renal recovery by integrating early changes in vital signs and inputs/outputs, which have the potential to aid clinical decision-making in the ICU.

PMID:38849453 | DOI:10.1038/s41598-024-63992-y

Free CME credits

Both our subscription plans include Free CME/CPD AMA PRA Category 1 credits.

Digital Certificate PDF

On course completion, you will receive a full-sized presentation quality digital certificate.

medtigo Simulation

A dynamic medical simulation platform designed to train healthcare professionals and students to effectively run code situations through an immersive hands-on experience in a live, interactive 3D environment.

medtigo Points

medtigo points is our unique point redemption system created to award users for interacting on our site. These points can be redeemed for special discounts on the medtigo marketplace as well as towards the membership cost itself.
 
  • Registration with medtigo = 10 points
  • 1 visit to medtigo’s website = 1 point
  • Interacting with medtigo posts (through comments/clinical cases etc.) = 5 points
  • Attempting a game = 1 point
  • Community Forum post/reply = 5 points

    *Redemption of points can occur only through the medtigo marketplace, courses, or simulation system. Money will not be credited to your bank account. 10 points = $1.

All Your Certificates in One Place

When you have your licenses, certificates and CMEs in one place, it's easier to track your career growth. You can easily share these with hospitals as well, using your medtigo app.

Our Certificate Courses